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Accuracy of a Propeller Model in Inviscid Flow

Per Lotstedt*
Saab Military Aircraft, 5-58188 Linkdping, Sweden

A model for computation of the time-averaged inviscid flow around airplane configurations with propellers
is described. The propeller is replaced by an actuator disk in the Euler equations. The propeller forces are
determined by a combined momentum-blade element theory. The computed results are compared to one-
dimensional theory, calculations with a panel method, and wind-tunnel experiments. The tested configurations
include a full aircraft at subsonic speed. The influence of the grid resolution and numerical parameters is also

investigated.

Introduction

HE analysis of the flow generated by a propeller is im-

portant in the design phase of a propeller-driven aircraft.
In the slipstream behind the propeller the flow properties are
significantly different from the properties in the freestream.
Surfaces of the configuration inside the slipstream experience
other forces with the propeller on than they do in freestream
flow. Accurate and relatively fast prediction of these forces
and moments can often be obtained by large-scale compu-
tations.

The numerical solution of the time-dependent Navier—Stokes
equations governing the flow around an airplane with rotating
propellers is complicated and very costly. Simplifications of
the equations are necessary in practice. Here we discuss three
simplifying steps leading to the stationary Euler equations and
an actuator disk model for the propeller. The propeller model
is introduced into a program for solution of the Euler and
Navier—Stokes equations on a computational domain parti-
tioned into a number of blocks with structured grids.! The
equations are discretized following Jameson?? and the pro-
peller forces are approximated by a combined momentum-
blade element theory.** The flow variables in compressible
flow are discontinuous at the disk. These jumps can be com-
puted by a one-dimensional model, which is compared to
calculations with the Euler equations. The accuracy of a nu-
merical solution depends on the density of the grid and the
artificial viscosity in the discretization. The influence of these
numerical parameters on a propeller solution is investigated
experimentally. The Euler equation approach is compared
with a panel method for propeller simulations developed in
Ref. 6. Comparisons with wind-tunnel measurements are made
with both methods. The Euler solution is computed around
SAAB 2000 with propellers. The results are compared to
experimental data. Special attention is paid to the deviation
of the slipstream from a cylindrical shape at the trailing edge
of the wing.

Other developments of a time-averaged propeller simula-
tion capability in solvers of the Euler equations are de-
scribed.” 2 The effect of the propeller is modeled by body
forces in Ref. 7, whereas the propeller is represented by a
disk in the other papers. In Refs. 10 and 12 the propeller
model is implemented in a multiblock code for solution of
the Euler equations similar to ours.! The treatment of the
actuator disk is somewhat different here. The first tests with
our approach are reported in Ref. 13 and further computa-
tional validation is found in Ref. 14.
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In the next section a mathematical background to the ac-
tuator disk approximation is given. Then the numerical method
is described briefly and the numerical results for four config-
urations are presented and compared to wind-tunnel data.
Finally, some conclusions are drawn.

Equations
The flow in the slipstream behind a propeller is time de-
pendent and very complicated. In order to reduce the com-
plexity of the computational task three simplifications are
made here: 1) inviscid flow, 2) a thin propeller disk, and 3)
time-averaged variables. These three steps will now be dis-
cussed in more detail.

Inviscid Flow

The flow in the slipstream is turbulent and time dependent.
A major reduction in model complexity is achieved if we
assume that the velocity and pressure in the slipstream are
well approximated by the Euler equations. The Euler equa-
tions including external forces generated by the propeller are
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] 2
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where p is the density, u, v, and w are the Cartesian velocity
components, E is the total energy, p is the pressure, and Q
is defined by

Q

With the gas constant vy, Eq. (1) are closed by

uf, + vf, + wf,

p = {(y ~ DplE — 0.5(u? + v? + w?)]

The force f = (f.. f,, f.) is different from zero only in a region
close to the propeller blades.
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Propeller Disk

The extension of the propeller in the direction of its axis is
small. By approximating the propeller by a thin disk the so-
lution procedure is further simplified. The body or volume
force f in Egs. (1) is replaced by a surface force on the disk.
The solution will be discontinuous at the disk and the flow
variables will satisfy certain jump conditions. The position of
these discontinuities is known and there is no need to develop
jump capturing methods as it is for shock solutions. Instead
the disk can be treated as an internal surface, where certain
algebraic conditions must be fulfilled.

The jump conditions at the disk can be derived in the fol-
lowing way. Assume that the propeller axis is parallel to the
x axis. This assumption is not necessary, but makes the expres-
sions less cluttered by geometrical detail. Introduce the def-
initions

U = (p, pu, pv, pw, pE)”"
F=(F,F,F)

F._ = [pu, pu®> + p, puv, puw, u(pk + p)|” @
F, = [pv, pvu, pv* + p, pvw, v(pE + p)]”
F, = [pw, pwu, pwv, pw? + p, w(pE + p)]”
G = (O’fx’fy7 fza Q)T
Then the integral form of the Euler Egs. (1) is
3[ UdV+J' F(U).ds:fcdv 3)
ot Jv av v

for an arbitrary volume V and its surface dV. In particular,
let V be a cylinder containing the propeller with thickness &
in the x direction and such that f # 0 only in V. Now let ¢
— 0. Since U is bounded at the propeller the first term on
the left-hand side (LHS) in Eq. (3) vanishes. As ¢ — 0 the
volume forces f must grow so that the right-hand side (RHS)
of Eq. (3) remains nonzero. Let 8(x) be the Dirac function,
x, the x coordinate of the disk, and

G(xa Yy, z, t) = G-(y, Z, t)B(x - xp)
Then, as ¢ — 0 it follows from Eq. (3) that
FX2 = Fxl + G

where the indices 1 or 2 denote the values at the upstream
and downstream sides of the disk, respectively. The jump
conditions at the disk are explicitly

(pu), = (pu),
(pu®), + p, = (pu?), + p, + [,
(puv), = (puv), + f, 4)

(puw), = (puw), + f,
[ou(E + plp)l. = [pu(E + plp)], + Q

In Eqgs. (4) the bars on the disk surface quantities f and Q
have been dropped. In general, all of the flow variables are
discontinuous at the disk.

For all flows we conclude from Egs. (4) that v, = v, + f,/
(pu), and w, = w, + f./(pu),. If the flow is incompressible
and p, = p,, then in addition u, = u,, p, = p, + f.. Note
that the relations (4) are valid also for time-dependent prob-
lems.

The variable Q must be evaluated on the disk. Suppose
that u can be split into two parts close to the disk

u,(x,y, 2,0 = uclx, y, 2, ) + u,(y, z, )tanh[n(x — x,)]

where u, is continuous and u, is half the jump in « at the
disk. Then u, = u. — u,and u, = u. + u,, and for large n
we have u = u,. The x component of Q in the integral on the
RHS in Eq. (3) is integrated in the x direction

&2
Oy, z, ) = lim f . u,f. dx

n—x

£/2
= lim f u,f.8(x — x,) dx = lim u,(x,, y, z, Of.
NS e

n—x

0.5(u, + w)f, (%)

After a similar derivation for the y and z components of QO
we find that Q can be chosen as

O = 0.5[(u, + u,)f, + (v, + Vz)fy + (w, + Wz)fz] 6)

Time-Averaged Equations

Even if the time-dependent Euler equations can be solved
with propeller forces f varying in time on the disk in Egs. (4)
with a stationary grid at a reasonable cost, we can simplify
the computational problem further by calculating the time-
averaged flow variables. Then the steady-state solution of
Eqgs. (1) is determined with the time average of fover a period
7 in the disk conditions (4). Assume that the time for one
revolution of the propeller is 7 and that a flow variable ¢
depends on f in the following way:

d)(x’ y» Z, t) = ¢O(xa y’ Z) + (\Ilf)(x’ y7 Z? t)

where ¥ is an operator depending on the geometry of the
configuration, Mach number, etc., such that ¥f = 0 when
f = 0. With the disk model (4) and the previous assumption
the only time-dependent data for the differential equations is
f. If ¥f depends linearly on f, so that

Y ypar = \Iflf £dt 7)
0 T JO

T

then we have for the time-averaged flow variable ¢ that

1 T 1 T
How-owrarvlra @

i.e., by solving the Euler equations with time-averaged forces
we obtain a correct time-averaged value of ¢ as the steady-
state solution.

The relation (7) may not be satisfied except for special
cases, but the time-averaged simplification rests on the as-
sumption that Eq. (8) is approximately valid at least for some
¢, e.g., the pressure. Such a special case is incompressible
flow in one dimension. Then the Euler equations are

u, = 0
)
u, + uu, + p./p, = 0
on an interval $ = (0, x,,,) with the jump condition
U, = u,
(10)

poui + pi + f(1) = poui + p,
at x, € $ and boundary conditions

u(07 t) = Uy, P(Oa t) = Po (11)
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By Egs. (10) we find that at the disk

pi + L) = p> (12)

It follows from Eqs. (9-11) that u is constant $. Hence, by
Eqgs. (9) p, = 0 and from Eqs. (11) and (12) we conclude

plx, ) = py, x <x, (13)
p(x’ t) = p() + fx(t)s X > x{;
Here we have that
-()”lf( ) de = x<x
p\x) = o plx, = Po» » 14)

1 [ 1"
0 = [ e =p,+ L[ wan x>x,
T Jo T Jo

and the time-averaged pressure p is obtained by solving sta-
tionary Egs. (9) with a time-averaged jump condition.

Propeller Conditions in One Dimension

In one space dimension expressions for the flow variables
behind the propeller, given the conditions ahead of the disk,
can be derived from the discontinuity relations (4). In one
dimension they are

Py = polty
pui + py+ f=pui + p, (15)
h, + 0.5u} + q¢ = h, + 0.5u3

In Eqgs. (15) the enthalpy /4 and heat addition g are defined
by the temperature 7 and

h=FE+ (plp) — 0.5u* = ¢,T
q = 0.5(u, + w)f/(p,uy)

where ¢, is the specific heat at constant pressure. From the
definition of total temperature T, (see Ref. 15), g is

g = (hy + 0.5u3) — (h, + 0.5u}) = (¢, T, + 0.5u3)
= (c, T, + 0.5u3) = ¢(T,, — T,) 17)

(16)

By Egs. (15) the propeller force contributes to the discon-
tinuities in p and u in the following way:

f=(p.—p)+ puy(u, — u) (18)
Introduce the dimensionless constant y
x = f1(pud)

Then from Egs. (15) we have
pi+ (1 + x)pui = p, + pyu3
and with the Mach number definition
pr+ (1 + x)yMip, = p, + YMip,
or

E_z:l+y(1+)()M%

) 1+ M2 (19)

Following the steps taken on p. 78 in Ref. 15 we arrive at
similar expressions for u,/u, and T, /T,

U _ <%>21 + (1 + M} 20)

u,  \M, 1+ yM3

T,, _ <M2)21 + 0.5(y — 1)M3 ':1 + y(1 + X)M“;]z

T,, M,) 1+ 0.5(y — 1)M3 1+ yM3
€3y
Combine Egs. (16) and (17) to obtain
Tm Xu% ( u2>
—=1+—-11+—= (22)
TU, 2CJ)Tl’1 U

Insert u,/u, from Eq. (20) into Eq. (22). Suppose that the
datau,, M,, T, , p,, and f are known to the left of the propeller
disk. Then we have two different expressions for T, /T, in
Egs. (21) and (22) with M, as the unknown variable. This
equation is easily solved numerically by, e.g., Newton iter-
ation. Given M, and M, we have formulas for p,/p, in Eq.
(19), us/u, in Eq. (20), and a similar result for p,/p, from the
continuity of momentum in Egs. (15). Hence, the flow var-
iables are completely determined at the disk. The one-di-
mensional theory here is compared to three-dimensional steady
computations shown next. A different derivation of similar
results is found in Ref. 16, where f must be split into the two
parts in Eq. (18) a priori.

For almost incompressible flow, when u, and u, and, there-
fore, M, and M, are small, we have from Eq. (19) that

palpy = 1 + (fip)
Then it follows from Eqs. (15) that

Uy = Uy, Py = P2

and from Egs. (21), (20), and (19) that

T(,Z/T(,] =~ p./p,

Numerical Implementation
The Euler Egs. (1) and (3) are approximated numerically
by the cell-centered finite volume scheme in Refs. 3 and 2,
respectively. Oscillations in the solution are avoided by adding
a blend of second- and fourth-order artificial viscosity. On a
Cartesian grid with constant step-size the approximation is of
second-order accuracy. For the simple equation

u u
—_ 4 — =
at ax

the fourth-order artificial viscosity is of the form

3 54
o5 (23)
64 ox*
where 6 is a constant close to 1 and 4 is the step-size. The
steady-state solution is computed by integrating the time-de-
pendent equations forward in time by a three-stage explicit
Runge—Kutta method until the residual of the equations is
sufficiently small. The coefficients in the Runge-Kutta method
are chosen for the best convergence rate. Suppose that U is
the vector of length N with five unknown variables p, pu, pv,
pw, and pE in each cell of the grid and #(U) is the system of
N nonlinear equations to be solved after discretization in space.
Let U” be the nth iterate of the Runge—Kutta iteration. The
iteration is interrupted after n steps if

RUSIE [N‘l 2 r%(U")] =e (24)
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The parameter ¢ is taken to be sufficiently small. The criterion
(24) is more reliable for propeller simulations than the usual
one based on the continuity equation.

The propeller is represented by a disk between two layers
of cells in the grid. The flow variables at the disk satisfy Eqs.
(4). For the spatial discretization the variables are needed at
cell boundaries, also at the disk. Since the values at the disk
are not known, they are extrapolated from the upstream and
downstream cells adjacent to the disk. In subsonic flow four
characteristics enter the disk from the upstream side and one
characteristic from the downstream side. Therefore, for sta-
bility the momentum in the x direction is taken from the
downstream cell and the other four quantities in Eqs. (4) are
taken from the upstream cells. Let u and d denote the values
at the upstream and downstream side of the propeller. Then
the equations for the upstream values are

(pu), = (pt)q
(pw?), + py = (pu®), + p.,
(puv), = (puv}, (25)
(puw), = (puw),

If

[ou(E + pip)l, = [pu(E + pip)l.

and for the downstream values
(pu)> = (ptt)
(o), + po = (P, + pu + [
(puv), = (puv), + f, (26)
(puw); = (puw), + f.
[pu(E + plp)l. = [pu(E + plp)], + Q

If G in Eqgs. (2) is added on both sides of Eqgs. (25), then we
find that Eqs. (4) is fulfilled. With given RHSs, the variables
upstream of the disk can be solved for in Eqs. (25) and the
downstream values are given by Eqgs. (26). There is an explicit
solution to each of these systems of nonlinear equations. The
fluxes over the cell boundaries at the disk for the finite volume
scheme can now be computed. The disk values are determined
in a similar fashion in Ref. 9.

The numerical boundary conditions in the far field are given
by the Riemann invariants, except for the boundary where
the propeller slipstream leaves the computational domain.
There p, pu, pv, and pw are extrapolated from the interior
and p is specified to be the freestream pressure p...

The propeller forces per area f,, f,, and f, are computed
by a combined momentum-blade element theory.** Input to
the propeller model consists of geometry data for the pro-
peller, the pitch angle B8 of the propeller blade, and the ad-
vance ratio J defined by

J = V.J(N,D)

where V., is the freestream speed, N, is the rotational speed
of the propeller, and D is the diameter. Should 8 be unknown,
an alternative input is the thrust coefficient C,

C. = T,)(0.5p.V2S)

where T, is the propeller thrust, p.. is the freestream density,
and S is a reference area. The lift of a two-dimensional section
of a blade is computed from the local flow conditions with a
Prandt]l compressibility correction based on the Mach num-
ber. The components f,, f,, and f, are then given by the lift
force and the local geometry of the blade. The forces always
vary in the radial direction on the disk. If the flow in front

of the propeller is not parallel to the propeller axis, then they
vary also in the azimuthal direction. In the present model,
three-dimensional effects on the blade are not included. A
refined model can be introduced easily as long as it only needs
local flow variable data upstream and downstream of the pro-
peller.

Computational Results

In this section we report on the computational results with
four configurations of increasing geometrical complexity. The
calculated values of the pressure coefficient ¢, and the veloc-
ities are compared to theory, other computations, and to wind-
tunnel measurements.

The accuracy of the propeller model depends on 1) the
simplifications of the governing equations leading to the steady-
state version of the Euler equations with a propeller disk; 2)
the discretization errors due to the grid, the artificial viscosity,
and the termination criterion in the iterative solution of the
discretized equations; and 3) the approximation of the time-
averaged propeller forces with the blade element theory.

The influence of the first source of error is best estimated
by comparison with experimental data recorded by averaging
over a sufficiently long time. The size of the numerical errors
is found in computational experiments by changing the spatial
resolution of the grid, the coefficients controlling the amount
of viscosity in the discretization, and the interruption level in
the iterations. These two causes of error in the computations
are investigated here.

In Ref. 17 the third issue is discussed. Computation of the
propeller forces by blade element theory is compared to a
more elaborate approximation. There the flow around the
propeller blades is determined by a panel method. That so-
lution then defines the input to the actuator disk model in
the Euler equations. The difference between these two
approaches is small in the computational experiments in
Ref. 17.

The four geometries in the comparisons are 1) a spinner
on a sting, 2) an axisymmetric nacelle, 3) an axisymmetric
nacelle and a wing, and 4) the civil aircraft SAAB 2000. The
freestream speed is subsonic in all four cases.

Spinner on a Sting

The configuration is a spinner and a sting with a copy of
the SAAB 340 propeller with four blades. This simple ge-
ometry was created to illustrate the discontinuities in the flow
variables at higher Mach numbers and to compare with the
one-dimensional theory developed earlier. In Fig. 1 the sur-
face grid and the propeller disk are shown. The grid has about
25,000 cells. The angle of attack « is 0 deg, the freestream
Mach number M., is 0.6, the thrust coefficient Cris 0.03, and
the advance ratio J is 2. There are no wind-tunnel data avail-
able for this case.

The computed pressure p, density p, and axial momentum
pu along radii starting at the propeller axis are displayed in

\%

Fig. 1 Surface grid and propeller disk of the spinner on the sting.
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Figs. 2—4, respectively. On the ordinate we have the distance
from the axis scaled by the propeller radius r,. Along the
abscissas the variations of p, p, and pu are plotted. The var-
jables are compared at the inflow boundary (D), upstream of
the disk (©), downstream of the disk (), and in the middle
of the sting (A). Equations (21) and (22) are solved for M,
given the same data upstream of the disk as in the Euler
calculations. Then p,, p», and (pu), on the downstream side
of the disk are given by Egs. (19}, (20), and (15). These results
downstream of the disk are marked by V.

Both p and p have lower values immediately in front of the
disk compared to the values behind the disk. Far downstream
p is almost constant and equal to the freestream pressure p..
= 1/y at the inflow boundary. The agreement downstream
of the disk between the one-dimensional theory and the Euler
solution is good. The three-dimensional effects seem to be
negligible in this case.

Axisymmetric Nacelle

The flow around an axisymmetric nacelle with a propeller
mounted on a sting is computed for investigation of the sen-
sitivity of the solution to numerical parameters. The geometry
is the same as in Ref. 18 for comparison with wind-tunnel
results. The propeller is the same as discussed previously (and

1.50
11/,
O inflow boundary
1.00 o upstream of the disk
x downstream of the disk
A in the middle of the sting
v theoretical 1D values
0.501 downstream of the disk
P
0.00 — : ; )
0.60 0.65 0.70 0.75 0.80
Fig. 2 Variation of p in the radial direction.
1.501 I'/I'p
1.001 o upstream of the disk
x downstream of the disk
¥ theoretical 1D values
0.50 & v downstream of the disk
p
0.00 — T T J
0.90 0.95 1.00 1.05 1.10
Fig. 3 Variation of p in the radial direction.
O inflow boundary
o upstream of the disk
x downstream of the disk
A in the middle of the sting
¥ theoretical 1D values
downstream of the disk
1.50 l‘/l'p
1.00
0.50
pu
0.00 . , , ~
0.50 0.55 0.60 0.65 0.70

Fig. 4 Variation of pu in the radial direction.

Table 1 Number of cells in different nacelle

grids
Grid x r ¢ Symbol
1 68 24 12 v
2 120 24 12 +
3 68 48 12 *
4 68 24 24 A
5 117 48 24 X

Ykl
g

I RHRBGLARRRL!

1| BRRER NSRS
8RB 250
TN

Fig. 5 Dense surface grid and propeller disk of the axisymmetric
nacelle.

-0.501 %
0.00
o experimental data
) X
0.50 v ,
0.00 0.50 1.00

'Fig. 6 Comparison of c, values on the nacelle for the five grids in

Table 1.

in Ref. 18). The configuration is shown in Fig. 5 with a dense
surface grid and the propeller disk. In this case @ = 0 deg,
M, = 0.15, C = 0.22, and J = 0.72.

The polar coordinate system is chosen so that the x axis
coincides with the propeller axis, the r axis is perpendicular
to the propeller axis, and ¢ is the azimuthal angle. With a =
0 deg the solution is axisymmetric. Five different grids are
tested and the solutions are compared to wind-tunnel results.
The number of cells in the different directions is listed in
Table 1. If n, is the number of cells in the r direction, then
n/2 — 2 is the number of cells on the propeller.

There is a baseline coarse grid 1, this is refined in the three
coordinate directions 2, 3, and 4 and the dense grid 5 is refined
in all directions. The viscosity coefficient 6 in Eq. (23) is 0.5.
The length scale is such that the length of the nacelle is about
1 and all flow variables are also scaled to be about 1. The
interruption parameter ¢ in Eq. (24) is 1077,

The values of the pressure coefficient ¢, on the nacelle for
the five grids are compared with experimental data in Fig. 6.
The origin of the abscissa in the figure is at the propeller plane
and the end of the nacelle is at x = 0.95. The measurements
are marked by @ and the symbols for the grids are found in
Table 1. Since the wind-tunnel data are not completely
axisymmetric, both the minimum and maximum value are
plotted for each x station. From this variation of c, we can
estimate the error in the experimental data to be about Ac,
= +0.03. In the figure the results from most of the grids are
between the extremal experimental data. By varying the grid
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1.501
1/t
1.001
0.50
— experimental data
u/Vv,
0.00 T T . =
0.00 0.50 1.00 1.50 2.00

Fig. 7 Comparison of the variation of u for the five grids in Ta-
ble 1.

1.50% 1/1p

1.00

0.501

— experimental data

uy/Ve
0.00 T —
0.00 0.20 0.40
Fig. 8 Comparison of the variation of the circumferential velocity u,,
for the five grids in Table 1.

size as in Table 1, ¢, deviates by at most Ac, = 0.05 from the
fine grid solution.

The computed velocity components in the x and ¢ directions
are plotted in Figs. 7 and 8, respectively. The velocities are
compared to experiments along a radius from the propeller
axis at a station in the middle of the nacelle. The r coordinate
scaled by the propeller radius r, is on the ordinate and the
velocity component scaled by V., is on the abscissa. The wind-
tunnel results are plotted with a solid line and the calculated
data are marked by the symbols in Table 1.

We find in Fig. 7 that none of the grids are able to capture
the behavior of u at the outer boundary of the slipstream.
This discrepancy is probably due to the simplified model for
computing the propeller forces, which is less accurate in the
tip region of the blade. The best resolution of the slipstream
in the neighborhood of r = 1 is, as expected, obtained with
the grids 3 and 5 with high density in the r direction.

In Fig. 8 the circumferential speed i, is underestimated in
the computations on all grids compared to the measurements.
The highest speed is achieved with grids 4 and 5 with good
resolution in the azimuthal direction. The absolute differences
between the computed and measured peak speeds is about
the same in Figs. 7 and 8. In the inner parts of the slipstream
the difference between the solution on the finest grid and the
coarsest grid is about 0.05 in both w/V,, and u/V..

The small velocity component in the radial direction is well
represented on all grids when comparing to wind-tunnel mea-
surements.

Different viscosity coefficients 6 are compared in Fig. 9 on
the coarse grid 1 for the circumferential velocity component.
The peak speed is higher when 8 = 0.5 (+ in the figure) than

150% r/r,
+ low artificial viscosity
x high artificial viscosity
] — experimental data
1.001

0.50+

u oo
0.00 q,/V

0.00 0.20 0.40

Fig. 9 Variation of the circumferential velocity u_ for different ar-
tificial viscosities.

Fig. 10 Top view of the axisymmetric nacelle with a wing.

itis when 8 = 1 ( x). The relative difference is much smaller
in the x component and the ¢, results over the nacelle.

The difference between solutions computed with different
termination levels, ¢ = 10 % and 10-° in Eq. (24), is barely
visible in the plots.

The conclusion from these numerical experiments is that a
good resolution of the grid in the radial direction is important
for an accurate prediction of the velocity at the outer bound-
ary of the slipstream. Also, the circumferential component is
improved by more cells in the azimuthal direction.

Axisymmetric Nacelle with Wing

This configuration is a combination of the nacelle in the
previous section and a wing with constant chord and a sym-
metric wing profile NACA 63,,4A—012. The propeller ge-
ometry here is also the same as on SAAB 340. The wing plane
is a symmetry plane of the geometry. A top view of the na-
celle, the wing, and the sting is found in Fig. 10. The flow
and propeller parameters are « = 0 and 5 deg, M., = 0.15,
Cr = 0.22, and J = 0.72. The propeller rotates in the clock-
wise direction looking downstream. The grid has 40 cells in
the radial direction, 24 in the azimuthal direction, and a total
of 96,000 cells. The number of cells on the propeller disk is
12 X 24. The viscosity parameter 6 is 0.5.

The computed pressures and velocities with the Euler equa-
tions are compared to other computations with a panel pro-
gram and the wind-tunnel results in Ref. 18. A higher-order
panel program for subsonic speeds has been extended to han-
dle also the vortical flow in the slipstream in Ref. 6. An
approximate geometry of the slipstream and its inner structure
is determined from the freestream flow over the nacelle. The
amount of vorticity in the slipstream is given by the same
forces per area f,, f,, and f. as in Eqs. (4) and they are cal-
culated by the same blade element approximation as in the
Euler equations.

In the first case @ = 0 deg. Then the flow is antisymmetric
in the sense that the solution on top of one wing is equal to
the solution at the bottom of the other wing. The computed
solutions with the Euler and panel methods have this property
and the wind-tunnel measurements almost have it.
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Fig. 12 Comparison of ¢, values at @ = 0 deg at station N1 in Fig.
10.

The ¢, values at two wing sections P1 and P2, defined in
Fig. 10, are compared in Fig. 11. To the left the Euler solution
(0) and to the right the panel solution (0O0) are plotted with
the wind-tunnel data (+). The Euler data are closer to the
experiments. The difference between the solutions at the lead-
ing edge may be due to compressibility effects and a coarser
surface grid in the Euler solution. Note the jump in ¢, at the
trailing edge in the results to the left. This is caused by a
shearing of the slipstream to the port side above the wing and
to the starboard side below the wing with our direction of
rotation of the propeller. This phenomenon is observed both
in wind-tunnel experiments'**" and in Euler computations'*
and is discussed later (cf. Fig. 17). The geometry of the slip-
stream in the panel method does not model this shift. In the
Euler computations there is a sensitivity in ¢, to the § param-
eter in the artificial viscosity in Eq. (23) at the trailing edge
of the wing. It should be chosen as small as possible without
introducing spurious oscillations in the solution. The amount
of artificial viscosity affects the flow pattern right behind the
trailing edge, where a vortex sheet leaves the wing, and has
an influence on the lift of the wing. A similar sensitivity is
present in the formulation of the Kutta conditicn at the trail-
ing edge in panel methods.

2] O panel program
* experimental data

Comparison of ¢, values at @ = 0 deg at two wing sections P1 and P2 in Fig. 10.

1.501
r/rp
[}

1.001
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0.50- — experimental data

u/V,,
0.00 . . . '
0.00 0.50 1.00 1.50 2,00

Fig. 13 Comparison of the variation of # at @« = 0 deg at station N1
in Fig. 10.

The error in ¢, over the wings in the Euler solution due to
the grid can be estimated in the following way. In this case
the flow is almost incompressible. From Bernoulli’s relation
it follows that:

c, =1 (VIV.), = (u? + v? + w32

Thus,

Ac, = —2VAVIVZ
The difference in V/V, between grid 4, which has approxi-
mately the same resolution of the propeller as the grid around
the wing—nacelle configuration, and the finest grid 5 in Table
1, is about 0.02 in the slipstream in Figs. 7 and 8. Since V/
V.. = 1.6 we conclude that Ac, would change by at most 0.06
over the wing with a refined grid in the r and x directions.
Because of the antisymmetry we can compare the measured
data on the upper part of the port side wing with the lower
part of the starboard wing and vice versa. These ¢, values
should be equal on the two wings. The data are not presented
here, but in the deviation from antisymmetry the uncertainty
is estimated to be Ac, = =0.1.

In Fig. 12 the wind-tunnel (+), Euler (0), and panel method
(©) results for the pressure coefficient are compared at station
N1 in Fig. 10 along the periphery of the nacelle. The abscissa
here is the ¢ angle, which is 0 on top of the nacelle. The
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Fig. 14 Comparison of ¢, values at « = 5 deg at P1, P2, S1, and S2 in Fig. 10.

agreement between the calculations and the experiments is
good. By Fig. 6 it follows that the calculated c, on the nacelle
is not so sensitive to the grid resolution.

The speed in the x direction is plotted in Fig. 13 at station
N1 in the radial direction with ¢ = 0 obtained with the two
computational methods and in the wind tunnel. The r coor-
dinate on the ordinate is scaled by the propeller radius and
the speed on the abscissa is scaled by the freestream speed
V... The experiments are displayed with a solid line. The panel
method (©) is more accurate than the Euler method (0) here,
because it models the outer boundary of the slipstream much
better than the Euler grid, which obviously is too coarse (cf.
Fig. 7). The reason for the better resolution of the panel
method is that in Ref. 14 the vortical flow inside the slipstream
is represented by discrete cylindrical surfaces with vorticity.
A sharp outer boundary of the slipstream is given by the
largest of these cylinders.

For propeller slipstream computations the advantages of
the panel method is that only a surface grid of the configu-
ration is needed and that the CPU time to obtain a solution
is relatively short. For the SAAB 2000 model in the next
example the CPU time on Cray Y-MP for the Euler code can
be up to 50 times longer. A geometrical structure for the
propeller wake is necessary in a panel method. The wake is
fixed in Ref. 6, but can in principle be relaxed in the com-
putations. No such predetermined slipstream geometry is used
in the Euler equation solver. The agreement with wind-tunnel
data is in general better for the Euler solution, in particular
for higher M., @ # 0 deg, and complex configurations. At
the outer boundary of the slipstream the almost discontinuous
behavior of the velocity is, however, better captured by the
panel method. A particularly fine grid is needed here in the
Euler calculations.

The ¢, calculations with the Euler equations are in good
agreement with the experiments for « = 5 deg in Fig. (14).
The difference is small between the computed and measured
¢, values also on the nacelle (cf. Fig. 12).

Comparisons are made in Eq. 14 with the wind-tunnel ex-
periments for a nonaxisymmetric nacelle with a wing in Ref.
18. The agreement between the calculated and measured data
is as good as it is for the axisymmetric geometry here.

SAAB 2000

A grid has been generated around a half model of the
propeller airplane SAAB 2000. The air inlet to the engine

Fig. 15 Surface grid on SAAB 2000 with propeller disks.

has been closed and the rear part of the nacelle is modified.
The grid has more than 800,000 cells and is fairly dense in
the vicinity of the wing, the nacelle, and the propeller disk.
The number of cells on the propeller in the radial and azi-
muthal directions is 12 and 76, respectively. The grid around
the port side of the airplane and its image in the symmetry
plane is depicted in Fig. 15.

A comparison between computed and measured c, values
on the port side wing is found in Fig. 16 at M., = 0.18, a =
0.67 deg, J = 0.8, and C about 0.13 corresponding to a
takeoff case. Two of the wing sections are located inside the
slipstream. Standing in front of the propeller it rotates in the
counterclockwise direction. The error [r(U%]| in Eq. (24) in
the initial solution U° has been reduced by three decades when
the iteration to solve the nonlinear equations are terminated
after n steps, i.e.,

I CUHNrU < 1073

The Euler solution is plotted with O and the experiments with
+, and the ¢, scale is the same for all sections. The agreement
between computational results and wind-tunnel data is quite
good. A similar agreement is obtained in another comparison
in Ref. 14 for a cruise case withJ = 3.0 and Cr =~ 0.015. The
discussion of the computational errors in the previous section
is applicable also here.

In Fig. 17 the contours of the difference in total pressure
Ap, = p, — D, are shown in a plane right behind the trailing
edge ¢ the port side wing looking in the upstream direction.
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Fig. 16 Comparison of ¢, values.
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Fig. 17 Total pressure contours in a plane behind the trailing edge
of the port side wing.

Computation Experiment

The computations (left) are compared with the experiments
(right). The dashed line to the left is the isobar for p,... The
slipstream rotates in the clockwise direction in the plots. Here,
M, =0.18,a = 0deg,J = 2.0, and Cr = 0.017. The static
pressure p. is 1 and, therefore, p,. is 1.023. The distance
between the isobars in the figure is 0.0005. The geometry of
the nacelle behind the wing in the computational model is
different from the geometry in the experiments. In the com-
putations the nacelle is extended by a cone (see Fig. 16) to
avoid the flat base in the wind-tunnel model. On the upper
side of the wing the slipstream is shifted to the right and on
the lower side to the left. Also in Refs. 19 and 20 this effect
is verified experimentally. The same phenomenon is present
in the wake behind a ship propeller and a rudder.?’ When
comparing the calculations and the measurements we observe
that the levels and patterns of p, are almost equal in the
slipstream above and below the wing. The geometry of the
outer boundary of the slipstream differs below the wing. The
shearing of the slipstream is more pronounced in the exper-

iments. This may be due to the sensitivity of the slipstream
behind the wing to the artificial viscosity parameter 6 in Eq.
(23), which is 1 in these computations.

Conclusions

A model for computation of propeller slipstream effects has
been incorporated into a program for solution of the Euler
equations around general aircraft configurations. For a high
subsonic Mach number the calculated results have been com-
pared to one-dimensional theory with good agreement. The
sensitivity to the choice of numerical parameters has been
investigated. The conclusion is that for accurate prediction of
the velocities in the slipstream good grid resolution is needed,
in particular at the outer edge of the slipstream. The c, values
are less sensitive. For the best accuracy at the trailing edge
of a wing the parameter for the artificial viscosity should be
chosen as small as possible. The solution of the Euler equa-
tions has been compared to the results from a panel method
and wind-tunnel experiments. In spite of the fact that it is
easier and faster to use a panel method for subsonic flow, the
Euler solver is the preferred method because of its ability to
capture the shape of the slipstream automatically. Further-
more, we expect it to be more accurate for higher Mach
numbers. The solution has been computed around a full air-
plane configuration, SAAB 2000, and the results have been
compared to measured data. The agreement is good for c,
values on the wing. The shearing of the slipstream behind the
wing is observed in both the computed and measured total
pressures.
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